HELM SERVICES HELM PRODUCTS
Spiritual Psychology: Chakra Yoga Holistic Health
BASE CHAKRA
qualities
and attributes
PHYSICAL BODY
NUTRITION
DIET
SUPPLEMENTS
DEVELOPMENTAL PHASES
BASE CHAKRA HEALING
YOGA PATH
Hatha Yoga
Grounding
CONNECTION
MANAGEMENT
CHAKRA ONE
IMAGES

SENSES


Senses are the physiological methods of perception. The senses and their operation, classification, and theory are overlapping topics studied by a variety of fields, most notably neuroscience, cognitive psychology (or cognitive science), and philosophy of perception.



Contents

Definition of "sense"

There is no firm agreement among neurologists as to exactly how many senses there are, because of differing definitions of a sense. In general, one can say that a "sense" is a faculty by which outside stimuli are perceived. School children are routinely taught that there are five senses (sight, hearing, touch, smell, taste; a classification first devised by Aristotle), though it is generally agreed that there are at least nine different senses in humans, and a minimum of two more observed in other organisms.

A broadly acceptable definition of a sense would be "a system that consists of a sensory cell type (or group of cell types) that respond to a specific kind of physical energy, and that correspond to a defined region (or group of regions) within the brain where the signals are received and interpreted." Where disputes arise is with regard to the exact classification of the various cell types and their mapping to regions of the brain.

List of Human senses

Using this definition several senses can be identified.

SIGHT or vision describes the ability to detect electromagnetic energy within the visible range (light) by the eye and the brain to interpret the image as "sight." There is disagreement as to whether this constitutes one, two or even three distinct senses. Neuroanatomists generally regard it as two senses, given that different receptors are responsible for the perception of colour (the frequency of photons of light) and brightness (amplitude/intensity - number of photons of light). Some argue that the perception of depth also constitutes a sense, but it is generally regarded that this is really a cognitive (that is, post-sensory) function of brain to interpret sensory input to derive new information.

HEARING or audition is the sense of sound perception and results from tiny hair fibres in the inner ear detecting the motion of a membrane which vibrates in response to changes in the pressure exerted by atmospheric particles within (at best) a range of 9 to 20000 Hz, however this changes for each individual. Sound can also be detected as vibrations conducted through the body by tactition. Lower and higher frequencies than can be heard are detected this way only.

TASTE or gustation is one of the two main "chemical" senses. It is well-known that there are at least four types of taste "bud" (receptor) on the tongue and hence, as should now be expected, there are anatomists who argue that these in fact constitute four or more different senses, given that each receptor conveys information to a slightly different region of the brain.

The four well-known receptors detect sweet, salt, sour, and bitter, although the receptors for sweet and bitter have not been conclusively identified. A fifth receptor, for a sensation called umami, was first theorised in 1908 and its existence confirmed in 2000 (see [1]). The umami receptor detects the amino acid glutamate, a flavor commonly found in meat, and in artificial flavourings such as monosodium glutamate.

SMELL or olfaction is the other "chemical" sense. Unlike taste, there are hundreds of olfactory receptors, each binding to a particular molecular feature, according to current theory. The combination of features of the odor molecule makes up what we perceive as the molecule's smell. In the brain, olfaction is processed by the olfactory system. Olfactory receptor neurons in the nose differ from most other neurons in that they die and regenerate on a regular basis.

Somatic senses

TOUCH or tactition is the sense of pressure perception, generally in the skin. There are a variety of pressure receptors that respond to variations in pressure (firm, brushing, sustained, etc).

THERMOCEPTION is the sense of heat and the absence of heat (cold), also by the skin and including internal skin passages. There is some disagreement about how many senses this actually represents - the thermoceptors in the skin are quite different from the homeostatic thermoceptors which provide feedback on internal body temperature.

NOCICEPTION is the perception of pain. It can be classified as from one to three senses, depending on the classification method. The three types of pain receptors are cutaneous (skin), somatic (joints and bones) and visceral (body organs). For a considerable time, it was believed that pain was simply the overloading of pressure receptors, but research in the first half of the 20th century indicated that pain is a distinct phenomenon that intertwines with all other senses, including touch.

Other

EQUILIBRIOCEPTION is the perception of balance and is related to cavities containing fluid in the inner ear. There is some disagreement as to whether this also includes the sense of "direction" or orientation. However, as with depth perception earlier, it is generally regarded that "direction" is a post-sensory cognitive awareness.

PROPRIOCEPTION/KINESTHESIA is the perception of body awareness and is a sense that people rely on enormously, yet are frequently not aware of. More easily demonstrated than explained, proprioception is the "unconscious" awareness of where the various regions of the body are located at any one time. (This can be demonstrated by anyone's closing the eyes and waving the hand around. Assuming proper proprioceptive function, at no time will the person lose awareness of where the hand actually is, even though it is not being detected by any of the other senses).


Non-human senses

Other living organisms have receptors to sense the world around them, including many of the senses listed above for humans. However, the mechanisms and capabilities vary widely. Among non-human animals, dogs have a much keener sense of smell than humans, although the mechanism is similar. Pit vipers and some boas have organs that allow them to detect infrared light, such that these snakes are able to sense the body heat of their prey. The common vampire bat may also have an infrared sensor on its nose (see here). Infrared senses, are however, just sight in a different frequency range. Insects have olfactory receptors on their antennae. Ctenophores have a balance receptor (a statocyst) that works very differently from the mammalian semi-circular canals. In addition, some animals have senses that humans do not, including the following:

Magnetoception (or "magnetoreception") is the ability to detect fluctuations in magnetic fields and is most commonly observed in birds, though it has also been observed in insects such as bees. Although there is no dispute that this sense exists in many avians (it is essential to the navigational abilities of migratory birds), it is not a well-understood phenomenon (see [2]). Recently, however, special implants have granted humans this ability too (see [3]).

Electroception (or "electroreception"), the most significant of the non-human senses, is the ability to detect electric fields. Several species of fish, sharks and rays have evolved the capacity to sense changes in electric fields in their immediate vicinity. Some fish passively sense changing nearby electric fields, some generate their own weak, electric fields and sense the pattern of field potentials over their body surface, and some use these generating and sensing capacities for social communication. The mechanisms by which electroceptive fishes construct a spatial representation from very small differences in field potentials involve comparisons of spike latencies from different parts of the fish's body.

The only order of mammals that is known to demonstrate electroception is the monotreme order. Among these mammals, the platypus (see [4]) has the most acute sense of electroception.

Humans (and probably other mammals) can detect electric fields indirectly by detecting the effect they have on hairs. An electrically charged balloon, for instance, will exert a force on human arm hairs, which can be felt through tactition and identified as coming from a static charge (and not from wind or the like). This is however not Electroception since there is no separate sense for it. The presence of an electrical field is merely concluded from a side-effect of another sense.

Magnetotactic bacteria build miniature magnets inside themselves and use them to determine their orientation relative to the Earth's magnetic field.

Echolocation is the ability to determine orientation to other objects through interpretation of reflected sound (like sonar). Bats and cetaceans are noted for this ability, though some other animals use it, as well. It is most often used to navigate through poor lighting conditions or to identify and track prey. There is presently an uncertainty whether this is simply an extremely developed post-sensory interpretation of auditory perceptions or it actually constitutes a separate sense. Resolution of the issue will require brain scans of animals while they actually perform echolocation, a task that has proven difficult in practice.

Pressure detection uses the lateral line, which is a pressure-sensing system of hairs found in fish and some aquatic amphibians. It is used primarily for navigation, hunting, and schooling.

The Twelve Senses

In the 1920s, at a time when conventional physiology only recognized five or six senses, Rudolf Steiner proposed that there were far more. He defined twelve senses; of these twelve, the first nine are now well-recognized: the equilibrioceptive (balance), proprioceptive (movement), nociceptive (sense of pain and wellness), tactile (touch), gustatory (taste), olfactory (smell), thermoceptive (warmth), visual and auditory senses. Steiner proposed three more senses as well: the sense of phoneme or language, the sense of thought and the sense of ego (the ability to recognize an ego outside of our own); he termed these three 'higher senses' that depended upon the healthy development of the foundational senses of balance, movement, pain/wellness and touch. Steiner's last three senses have not been confirmed by scientific research; in particular, sensory organs for them would have to be found.

The Senses and Intelligence

Out of research into how creativity manifests in different individuals, Howard Gardner described multiple kinds of intelligence: visual, musical, logical/mathematical, linguistic, movement, naturalistic, kinesthetic, intrapersonal and interpersonal intelligences. Most of these correspond to particular senses - in fact, all of them may if Steiner's higher senses are included. Other senses (taste, smell) may also have their own particular intelligences (Gardner has said that his search for additional intelligences continues). The relationship between intelligence and sensory perception thus appears to be a close one.

The relationship can become too close, leading to a dominance of reactive over contemplative intelligence. Thus, highly intelligent people are often described as 'quick' and 'sharp,' suggesting the highly-tuned (even frazzled) nature of their nervous system.


RELATED READING


JUICE PLUS ORGANIC WHOLEFOOD DIETARY SUPPLEMENTS: TRIED, TESTED, PROVEN, AFFORDABLE: 1.92 per day for all your 90 essential nutrients




Spiritual Psychology: God reveals his omnipotent nature to an enquirying soul
HELM: Serving the Soul since 1998

COPYRIGHT HELM@1998 - 2017

For webmaster enquiries, link exchange, advertisements, etc. please contact:

For all other enquiries please contact:
Spiritual Psychology: Information Email

Click here to use our free eform to contact us directly...




HELM: Copyright

page top

end of file